A convexity theorem for semisimple symmetric spaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fourier Analysis on Semisimple Symmetric Spaces

A homogeneous space X = G/H of a connected Lie group G is called a symmetric homogeneous space if there exists an involution σ of G such that H lies between the fixed point group G and its identity component Go . Example 0. For a connected Lie group G′, put G = G′×G′, σ(g1, g2) ) = (g2, g1) and H = G. Then the homogeneous space X = G/H is naturally isomorphic to G′ by the map (g1, g2) 7→ g1g−1 ...

متن کامل

A Convexity Theorem and Reduced Delzant Spaces

The convexity theorem of Atiyah and Guillemin-Sternberg says that any connected compact manifold with Hamiltonian torus action has a moment map whose image is the convex hull of the image of the fixed point set. Sjamaar-Lerman proved that the Marsden-Weinstein reduction of a connected Hamitonian G-manifold is a stratified symplectic space. Suppose 1 → A → G → T → 1 is an exact sequence of compa...

متن کامل

A Conjugacy Theorem for Symmetric Spaces

In this paper we prove that two Cartan subspaces of a semisimple symmetric pair (g, τ) are conjugate under G = Int(g) if and only if they are conjugate under (Gτ )0. Moreover we derive a double coset decomposition for G, which improves the results of Oshima and Matsuki.

متن کامل

The C-function for a Semisimple Symmetric Space 1 Spherical Functions for Riemannian Symmetric Spaces

We discuss the product formula for the c-function for a Riemannian symmetric space and the similar formula for a noncompactly causal symmetric space. We derive two functional equations between the c-functions using the product formulas. Finally some examples where the c-functions turn up in analysis on symmetric spaces are given. Let G be a connected semisimple Lie group with nite center. Let K...

متن کامل

Beurling’s Theorem for Riemannian Symmetric Spaces Ii

We prove two versions of Beurling’s theorem for Riemannian symmetric spaces of arbitrary rank. One of them uses the group Fourier transform and the other uses the Helgason Fourier transform. This is the master theorem in the quantitative uncertainty principle.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 1994

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.1994.162.305